
Monetary Policy Shocks: A Case Against

Countercyclical Markups∗

Lukasz A. Drozd
Federal Reserve Bank of Philadelphia

Marina M. Tavares
International Monetary Fund

June 23, 2024

Abstract
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are countercyclical in response to aggregate demand shocks because the inventory-to-sales
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the inventory-to-sales ratio. The key element of our theory is that market access is costly
and serves as a long-lived complement to inventories in generating sales, which affects
both the dynamics of the inventory-to-sales ratio and markups. Our model is quanti-
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theory struggles to account for in the parametric cases when inventory dynamics become
informative about markup dynamics.
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1 Introduction

Are markups procyclical, countercyclical, or acyclical? The answer to this question is con-

sequential for macroeconomics. For example, if markups are procyclical, sticky goods prices

cannot be all that important in breaking monetary neutrality in New Keynesian models be-

cause they implicate and rely on countercyclical markups to break monetary neutrality. Markup

dynamics also affect the interpretation of measured total factor productivity, and hence the im-

portance of demand shocks in accounting for business cycle fluctuations. The post-pandemic

outbreak of inflation has spurred renewed interest in how markups respond to aggregate demand

shocks and their potential to generate what is known as the ”price-price spiral.”1

The debate on whether markups are procyclical or countercyclical is far from settled due

to the difficulties of measuring marginal costs (Nekarda and Ramey, 2013). Despite these

difficulties, the consensus view in New Keynesian literature is that markups are countercyclical

in response to demand shocks. One of the leading arguments supporting this view is based

on the idea that the countercyclical response of the inventory-to-sales ratio to monetary policy

(MP) shocks informs how markups must move, indicating that, measurement issues aside,

markups are countercyclical.

Intuitively, according to business cycle theories of inventories, inventories must contribute

productively to aggregate sales to explain procyclical inventory dynamics in the data (Bils and

Kahn, 2000; Fitzgerald, 1997; Blinder and Maccini, 1991). But if that is the case, the marginal

value of inventory then largely derives from the markups earned on the sales that inventory

directly enables. Since the inventory-to-sales ratio rises during demand recessions, the models

predict that markups must high during recessions, and hence the conclusion. Kryvtsov and

Midrigan (2012) (KM, henceforth) articulate this point in a New Keynesian menu cost model

using monetary policy shock-based identification of demand shocks. Their work builds on the

1Blanchard and Blanchard and Bernanke (2023) and Weber and Wasner (2023) argue that market power
and markups contributed to inflation. This topic has also garnered attention from policymakers in the context
of rising prices. For instance, the House Energy and Commerce Subcommittee on Consumer Protection and
Commerce held a hearing titled “Pandemic Profiteers: Legislation to Stop Corporate Price Gouging” on Febru-
ary 2, 2022, addressing concerns about corporate pricing behavior during the pandemic. Similarly, the Senate
Committee on the Budget conducted a hearing on April 5, 2022, titled “Corporate Profits are Soaring as Prices
Rise: Are Corporate Greed and Profiteering Fueling Inflation?”
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earlier work by Bils and Kahn (2000) (BK, henceforth).2

But the thesis that markups are countercyclical and positively correlated with the inventory-

to-sales ratio is not without controversy. In particular, it clashes with the cyclical properties

of profits and profit margins seen in the data vis-à-vis the predictions of NK models featuring

countercyclical markups and the standard assumptions on the production function (Figure 1

shows the unconditional correlation). Christiano et al. (1997) were the first to point this out,

and their findings have been broadly echoed by the literature. For example, Broer et al. (2019)

conclude that sticky wage models perform better because the effects of monetary policy are

more plausible. According to Broer et al. (2019), the distributional effects of sticky goods

price models imply “a transmission mechanism that is implausible: output falls (...) because

markups and total profits rise, increasing (...) demand for leisure (. . . ).”

These issues are not surprising. As first shown by Hall (1988), breaking the link between

markups and profit measures requires a departure from the standard Cobb-Douglas production

function and/or the assumption of linear pricing of labor—as we explain in the Data Section.3

Part of the empirical literature argues that such a departure is warranted (Bils, 1987; Rotem-

berg and Woodford, 1999), but the extent to which this is the case is subject to debate (Nekarda

and Ramey, 2013). Since most New Keynesian models do not feature these departures, coun-

tercyclical markup dynamics implies implausible profit dynamics in these models.

In this paper, we are motivated by this controversy and challenge the proposition that

inventory dynamics inform markup dynamics. To that end, we explore the logical alternative

to KM’s argument: markups are procyclical or acyclical, as suggested by the conventional Cobb-

Douglas identification of markups implied by the models, but the existing theory of inventories

fails to account for the countercyclical dynamics of the inventory-to-sales ratio. We call this the

markup-inventory puzzle, quantify it using a proxy SVAR, and seek to resolve it by proposing

a new theory.

2Conditioning on MP shocks is important to control the effects of interest rates on the discount factor. As
shown by Khan and Thomas (2007), the conclusion does not extend to productivity shocks in the standard
RBC framework featuring an Ss model of inventories. However, unless there is a direct link between markups
and interest rates (the discount factor), the conclusion reached by KM likely extends to other types of aggregate
demand shocks. Monetary policy shocks are thus used as a litmus test for what may be true more broadly.

3As we show in the Data Section, markups are gross margins to the extent that costs of goods sold only
capture variable production costs.
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Figure 1: Gross profit margin and I-to-S ratio of inventory holding publicly traded firms.
Notes: The figure shows log deviations of gross profit margin and inventory-to-sales ratio for publicly traded inventory holding
firms from HP10000 trend (after seasonal adjustment and after minor smoothing of the resulting series). The data excludes
finance, real estate, insurance, and utilities, and the source is S&P Compustat Quarterly Fundamentals. The aggregation
procedure controls for entry and exit as described in Section 2. The inventory-to-sales ratio also comes from Compustat, and
total inventories have been analogously aggregated to construct an aggregate inventory-to-sales ratio.

The empirical part of our paper establishes four stylized facts about the responses of mea-

sured markups under the conventional Cobb-Douglas identification of markups from firm-level

gross margins (De Loecker et al., 2020). These facts include (1) a countercyclical response of

the inventory-to-sales ratio, (2) a procyclical or acyclical response of measured markups, (3) a

scant response of the gross output-to-sales ratio and retail price, and (4) a decline in industrial

capacity utilization and labor productivity. To identify the impact of monetary policy shocks,

we follow Gertler and Karadi (2015) and estimate a proxy SVAR that includes markups and

other relevant business cycle variables for its estimation and our study.

The key novel element of our theory, compared to the BK theory—a version of which our

model nests—is the presence of sunk market access costs and search frictions that influence

how buyers and sellers match and turn production into consumption. Specifically, production

and distribution are assumed to be fragmented into long-lasting and costly-to-develop units,

referred to as access posts (or simply shops). Access posts (shops) are essential for attracting

searching customers, who are representative of distributors, and they fragment production into
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random order streams from the producers’ perspective. This fragmentation affects capacity

utilization and pricing decisions after demand shocks. Monetary policy has real effects because

wages are assumed (downwardly) rigid.

The key mechanism of our model that changes the correlation between markups and the

inventory-to-sales ratio in response to MP shocks is that market access posts (shops) are long-

lived assets complementary to inventories in generating sales. Following monetary contractions,

the most economical adjustment is to allow the stock of access posts to depreciate at the

exogenous rate—a fairly small number. Scrapping existing access posts, whose utility outlasts

the shock’s transient duration, is inefficient because investment in access posts is irreversible.

Naturally, since access posts are more productive when utilized, as demand falls, firms’ inventory

holdings rise relative to sales. In addition, production fragmentation implies that firms lower

markups to bring in more customers and increase resource utilization. Formally, this is because

firms balance two constraints affecting the sales rate in the model: production time, which is

positive due to production fragmentation and independent of the price (markups), andmatching

time, which is positive due to search frictions and depends on the price (markups). During

demand recessions, matching time gains significance, leading firms to lower markups. Each

individual firm deviates little from the prevalent markup set by its competitors, but equilibrium

markups fall significantly because search induces complementarity in pricing decisions.

Our modeling of inventories is motivated by anecdotal evidence documented by related

empirical literature. Survey data show that 86 percent of transactions in the manufacturing

sector (70 percent across all sectors) occur via specialized business-to-business (B2B) supplier

relationships (Blinder et al., 1998) and that about 70 percent of firms adopt a just-in-time

delivery model (JITD) (Ortiz, 2022).4 JITD does not imply the absence of inventories but

rather that inventories arise as a byproduct of production and marketing. Consistent with this

view, Blinder et al. (1998) report that 67 percent of inventory-holding firms consider inventories

as ”totally unimportant” in smoothing demand fluctuations.5 Our model embeds this evidence

4A logistics strategy that involves maintaining minimal inventories and timing deliveries of intermediate
goods precisely. This approach aims to minimize inventory storage costs and enhance the overall efficiency of
the supply chain.

5See pages 96 and 277 in Blinder et al. (1998), who note ”the most salient observation is that the great
majority of sales are made not to consumers but to other businesses,” and ”if they [inventories] are used to
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by assuming inventories play little role in smoothing output. Second, firms spend almost 20

percent of their costs on sales-related items, classified as Selling, General, and Administrative

expenses on the income statement. Many of these expenses create lasting assets that enhance

a firm’s ability to find customers. In our model, these costs build the stock of access posts.

Our theory builds on the insights of Diamond (1971) and the subsequent literature on the so-

called “Diamond paradox.” The contributions by Wolinsky (1986) and Anderson and Renault

(1999) are particularly relevant here because they similarly feature taste shocks to avoid the

extreme implications of the Diamond paradox. The targeted nature of search in our model

is different from but related to the relative entropy approach developed by Cheremukhin and

Restrepo-Echavarria (2020). In the context of the business cycle literature, our work draws on

the insights of Drozd and Nosal (2012) and Storesletten et al. (2011). Although their models

do not incorporate inventories, they share with us the motivation for including search frictions

and the common theme of documenting the importance of these frictions to understand a host

of data patterns. The enodgenous link between resource utilization and demand is similar in

our model to that in Storesletten et al. (2011).

2 Data

This section documents the key facts for our analysis. Our sample combines MP shocks with

quarterly Compustat data, which we use to recover empirical impulse responses of markups,

inventories and other relevant business cycle variables to MP shocks in a proxy SVAR setup.6

Our approach of identifying markups (measured markups, hereafter) follows closely that in

De Loecker et al. (2020). We describe it below.

2.1 Empirical framework and identification assumptions

To identify markups, we assume that firms operate a nested production function

Y (V (V1, V2, ...Vn) , F ), where F is a fixed factor bundle over the business cycle, and Vi are

buffer demand shocks, inventories of finished goods can be a source of price stickiness; when asked about this
theory, however, firms reject it resoundingly.”

6Detailed list of data sources is in the Appendix at the end.
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inputs that can be adjusted on business cycle frequency. Assuming Y,V are well behaved, and

the price of each variable factor is given by some function vi (Vi) of the input Vi, production

cost is

c (Y ) := min
V≥0

(V (v) + fF ) s.t. Y = Y (V, F ), (1)

where

v(V ) := min
Vi≥0

( ∑
i=1,...,n

vi (Vi)Vi

)
s.t. V = V (V1, V2, ...Vn) .

Using the first-order condition and the envelope condition, v′ (V ) = c′ (Y )YV (V, F ), and mul-

tiplying by the price p, it is clear that cost minimization implies the following formula for the

markup:7

µ := log
p

c′ (Y )
= log

pY

v′ (V )V︸ ︷︷ ︸
gross margin

+ log
∂Y (V, F )

∂V

V

Y︸ ︷︷ ︸
output elasticity α

. (2)

Accordingly, to identify markups, we need firms’ revenue pY, as well as the cost of variable

inputs measured at the marginal cost of these inputs.

2.1.1 Identification assumptions and discussion

To identify markups from firm-level data—which from now on we refer to as measured

markups—we use the above formula and make the following assumptions:

1. Output elasticity α is independent of monetary policy shocks, firm input choices, and the

aggregate state. That is, amid the apparent variation of inputs in the data, the produc-

tion function is Cobb-Douglas, Y (V, F ) = V αF β, with potentially stochastic parameters

α, β > 0 that are independent of firm choices and monetary policy.

2. The marginal cost of the composite variable input bundle v′ (V ) is constant; that is,

v′ (V ) =: v > 0. The sufficient condition for this to be true is that V (·) is constant

returns to scale production function and factor markets are competitive.

7The first order condition is v = c′ (Y ) ∂Y (V,F )
∂V after plugging in c′ (Y ) in place of the Lagrange multiplier

by the envelope theorem. Dividing by c′ (Y ) and multiplying by P/v gives the expression in the text.
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In addition, we assume that we can measure these objects using costs of goods sold on reported

income statements:

3. The cost of goods sold reported by firms on their income statements identifies v′ (V )V = vV .

Assumptions 1 and 2 are controversial in light of Bils (1987) and Rotemberg and Woodford

(1999). However, as discussed by Nekarda and Ramey (2013), the results of this empirical

literature are inconclusive. Furthermore, assumptions 1 and 2 are valid in most macro models,

including the very inventory models used to argue that countercyclical inventory-to-sales ratio

implies countercyclical markups. Finally, as discussed in Section 2.5, if assumptions 1,2,3 are

violated, consistent with Bils (1987) and Rotemberg and Woodford (1999), the marginal cost

curves at the firm level are steep so that they flip the correlation between markups and margins

in the data. But steep marginal cost curves even in the basic BK model imply a negative

correlation between markups and the inventory-to-sales ratio (see discussion in Section 4.5 and

BK), which means that the inventory dynamics is no longer informative about the markup

dynamics. As for assumption 1, we use output elasticities estimated by DEU at a two-digit

industry level and interpolate them to a quarterly frequency. We find that these estimated

elasticities do not affect the results and do not pursue further robustness in this respect. This

is apparent from Figure 1, which plots both the gross margin and the measured markup that

takes into account time-varying elasticities reported by DEU.

2.1.2 Implementation

To construct the aggregate markup under the stated identifying assumption, we use the S&P

Compustat Quarterly Fundamentals (NA) dataset and operationalize the following formula

based on the above theoretical framework:

Measure Markupt = log
∑
i∈It

(
COGSit∑

j∈It COGSjt

αit

(
Salesit
COGSit

))
= log

∑
i αitSalesit∑
j COGSjt

, (3)

where αit is the two-digit NAICS elasticity taken from De Loecker et al. (2020) and interpolated

to quarterly frequency, Salesit is firm-level sales (pY in equation 2), and COGSit is firm-level

cost of goods sold (vV in equation 2).
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Figure 2: Estimated Impulse Responses of the Baseline Series (SVAR).

To account for the fact that Compustat only includes publicly traded firms and mitigate

the impact of entry and exits to that dataset, we construct aggregates from the growth rates of

firms in the dataset rather than summing up all existing firms—in the spirit of chain-weighting.

This procedure ensures that firms entering or exiting the pool of publicly traded firms af-

fect the aggregates only to the extent that their growth rate differs from the average growth

rate of the firms in the sample. At the same time, we avoid the issues with the alterna-

tive route of fixing the panel of firms over such a long time horizon. Specifically, given some

Zit ∈ {αitSalesit,COGSit, ...}, or any other aggregate of interest, we construct
∑

i Zit by first

calculating growth rates from the formula git := (Zit+1 − Zit)/Zit, where t is a quarter and

i is such that Zit > 0 and Zit+1 are both in the sample—which defines some subset Ic
t ⊂ It

of firms—and then use the weight of each such firm wit := Zit/
∑

i∈Ic
t
Zit to construct the

aggregate index from the recursion:8 Z0 = 100, Zt+1 = (1 +
∑

i∈Ic
t
witgit)Zt, for all t.

To identify the response of markups to monetary policy shocks, and their comovement with

other business cycle variables, we estimate a proxy SVAR using the framework developed by

8We also seasonally adjust the aggregated series by running a regression on quarterly dummies using data
from 1979 to 2012. To seasonally adjust these series, we first log the series, use the HP filter with parameter
10000 to remove the low-frequency trends, and use the residuals from a regression on quarterly dummies to
remove seasonality from the detrended series. We then add back the trend to these residuals to obtain seasonally
adjusted series. We drop firms in the so-called FIRE sectors: finance, insurance, real estate, and public sector.
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Gertler and Karadi (2015). The time period of the analysis is that of Gertler and Karadi (2015)

for their instrumented estimation and whenever there is an overlap in data usage we use their

original series.9 That is, our SVAR includes the original time series found in Gertler and Karadi

(2015)—CPI, industrial production, one-year nominal yield, and the Gilchrist and Zakrajsek

(2012) excess bond premium (EBB, hereafter)—and adds additional series for the aggregate

markup backed out from (3), inventory-to-sales ratio, capacity utilization, labor productivity,

gross-output-to-sales. We construct the inventory-to-sales ratio from the series for real value

of sales and inventory in manufacturing and trade industries published by Bureau of Economic

Analysis (BEA).10 We construct the gross output-to-sales ratio from the series and the identity:

Y ≡ S +∆I, where S is real sales and ∆I is the change in real inventory holdings.11 As shown

in Figure 2, the SVAR yields similar results to those found in Gertler and Karadi (2015) for

the original variables.

2.2 Key Findings

Figures 2 and 3 plot an impulse response to negative monetary policy shock that results in a

normalized decline in the interest rate. We conclude from these responses the following stylized

facts about the responses of the included variables to monetary policy shocks. The goal of the

next section is to propose a theory consistent with these facts.

9Gertler and Karadi (2015) use 1979:M7 to 2012:M6 series to estimate the reduced form VAR, and 1991:M1
to 2012:M6 to identify the shocks using the instrument. Our identification uses 1991:M1 to 2012:M6 for both
and used the Bayesian method developed by Arias et al. (2021).

10We compared the series with corporate profits to value added ration in national income account and the two
series are strongly positively correlated. However, using aggregate corporate profits is not good because they
include costs associated with fixed factors underlying the category of “Selling, General and Administrative.”
This can introduce significant bias, as explained in Section 2.4.

11Our estimation is based on the replication codes taken from Arias et al. (2021), which we modify as described
in the Online Appendix to add the additional variables. The SVAR uses flat priors and it has 6 lags. All variables
except interest rates are in natural logarithms (multiplied by 100%). The SVAR is on monthly frequency, and
since both measured and productivity are quarterly series, we interpolate monthly values from their quarterly
counterparts. To do so, we use BLS payroll employment (all private) to predict the monthly values spanning
each quarter again using the Chow and Lin (1971) method and the MATLAB package taken from Quilis (2018).
We have experimented with other interpolation methods, including simple linear interpolation from the endpost
and the results are the same. Maintaining monthly frequency has the advantage of using the original MP shock
instruments. Additional robustness tests can be found in the Online Appendix.
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Figure 3: Aggregate Evidence: Impulse Responses of Added Series.

Stylized fact 1. Measured markup falls and the inventory-to-sales ratio rises.

The median response of measured markups to an MP shock is strongly procyclical and the

median response of the inventory-to-sales ratio is countercyclical. The result is significant up to

the 90th percentile, as shown. Accordingly, the two series exhibit a strong conditional negative

correlation.

Stylized fact 2. Gross output-to-sales is moves little and slightly rises. The gross

output-to-sales ratio moves little in the data and is mildly procyclical. This fact indicates that

inventories play a scant production smoothing role, echoing earlier findings of the literature

(Fitzgerald, 1997; Blinder and Maccini, 1991; Bils and Kahn, 2000).

Stylized fact 3. Capacity utilization and labor productivity both fall. Capacity

utilization falls, albeit with some delay, and labor productivity falls. The initial rise in capacity

utilization is not statistically significant and we do not consider it relevant.

Stylized fact 4. The impact of MP shocks on retail prices is modest over the

horizon of the shock, in part because monetary policy restores the equilibrium.

The response of prices is muted. MP shock raises one-year T-bill rate for about 20 months

and it leads to a significant increase in the excess bond premium—which has been shown to
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be important to control for the endogenous response of monetary policy using proxy SVAR

(Gertler and Karadi, 2015). During that time prices fall little, and thereafter monetary policy

seems to reverse course.

2.3 A comment on mismeasurement of variable costs

Before we go on, it is instructive to discuss the consequences of a mismeasurement of variable

production costs (in violation of Assumption 3). While COGS include direct production costs,

such as costs of materials, labor costs associated with production, and overhead costs of pro-

duction facilities, some of these costs may be fixed or sticky on the business cycle frequency.

If that’s the case, Assumption 3 is violated and the question is how it affects our conclusions.

As we argue here, if that is the case, the inventory-markup puzzle is moot and the evidence for

countercyclical is the evidence for mismeasurement.

To examine the effect of such a form of mismeasurement, consider a three factor Cobb-

Douglas production function of the form: Y = V αF βF ζ
0 , where α, β, ζ are positive valued

factor shares, V is a variable factor over the business cycle frequency, and suppose that, while

F0 and F are both fixed factors over the business cycle frequency, F is “erroneously” included

in COGS alongside the variable factor V . For simplicity, assume factor prices v, f, f0 are fixed

and the variation of markups comes solely from the business cycle fluctuations in the price of

output p.

Log-linearizing the implied formula for the measured markup and the “true” markup

(markup, hereafter) around the long-run steady state shows that the mismeasurement of vari-

able gods introduces a cyclical wedge

log

(
Measured Markup

Measured Markupss

)
− log

(
Markup

Markupss

)
=

β

α

1

α + β
log

(
Y

Y ss

)
.

Accordingly, if real gross output Y falls (rises) during recessions (booms), measured markup

may fall (rise) even if the actual markup rises (falls).

While this is a problem to identify markup cyclicality from margins, to flip the correlation

between the measured markup and the markup, note that β must be large enough—about half
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of α the volatility of gross output and measured markup in our data.12 Since α + β is less

than .7 (the share of COGS in total costs across in our sample), β must be 1/3 or higher, in

which case α is lower than 1/3. If so, flipping the correlation also implies that the marginal

cost curves over the business cycle become quite steep, as implied by the log-linearized formula

for the marginal cost:

log

(
MC

MCss

)
=

1− α

α
log

(
Y

Y ss

)
.

As shown by BK, and as we explicitely show in Section 4.5 using our model, with a

strongly procyclical marginal cost the inventory-to-sales ratio becomes countercyclical even

when markups are procyclical or acyclical. As a result, the inventory-markup puzzle no longer

arises. Intuitively, if the marginal costs fall during recessions, firms expect future costs to be

higher, and building up inventory after a negative MP shock is a profitable strategy even when

markups are fixed. As discussed by Nekarda and Ramey (2013), departures from Assumptions

1 and 2 have a similar effect on the slope of the marginal cost curves and an analogous argu-

ment applies. In conclusion, the literature’s point about inventories implying countercyclical

markups is only valid when there is no mismeasurement, and only in that case what we do here

is of interest. This justifies the focus on the marginal cost curves that are consistent with the

standard Cobb-Douglas setup or even more flat.

3 Theory

Time is continuous, and the horizon is infinite. The economy consists of a representative

household, a representative distributor, a representative producer, and a monetary authority

that serves as a source of demand shocks. Goods are traded in a centralized (Walrasian) retail

market and a decentralized wholesale market with search frictions.

The household consumes goods purchased from the distributor in the retail market, trades

state noncontingent bonds affected by monetary policy, and supplies labor at a nominally rigid

wage w ≡ 1 that serves as the numeraire. The rigid wage implies that the labor supply is equal

to the labor demand at w.

12The variance of sales is about twice the variance of the measured markup.
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To obtain goods for resale, the distributor dispatches shopping automata (shoppers) at

intensity Q to the wholesale market, where shoppers match with access posts set up by the

producer by searching for the lowest price posted by the producer’s many access posts. Shoppers

can haul 1 + η units of the good, where η is an i.i.d. random variable interpreted as a match-

specific taste shock only observable to the shoppers upon receiving a price quote. Matches are

anonymous, transient, and formed instantly by the shoppers.

The producer employs a linear technology to produce goods from labor, implying marginal

cost v ≡ w ≡ 1 (although v ≡ w ≡ 1, we keep symbols for clarity). The producer sets up access

posts to attract shoppers at a sunk cost ϕv. Each access post holds at most one unit of output,

contributing to search, and producing output takes τ−1 periods of time. Access posts depreciate

at a fixed rate and hence represent the stock of marketing capital of the producer. We interpret

M as inventory holdings across the economy and interpret M/Q as the inventory-to-sales ratio

in the economy.

Throughout, we focus on a pure symmetric strategy equilibrium. Accordingly, all access

points quote the same wholesale price p̃∗, and all shoppers employ the same search strategy

dictated by the distributor. The aggregate state is represented by some vector S that evolves

according to a known law of motion. All variables are functions of S and, hence, indirectly,

functions of time. To simplify notation, we drop the time subscript t from all variables through-

out. We use ”dot” notation for time derivatives; that is, for any generic variable x, we write ẋ

in place of dx(St)/dt. Figure 4 provides a schematic representation of the model setup.

3.1 Search, matching, and distribution

Let M > 0 be the measure of stocked access posts that are visible to the shoppers. In equilib-

rium, all access posts quote the same price,13 and hence matches form at the rate

Λ :=
Q

M
, (4)

13It is helpful to rewrite this condition as follows: ΛMdt = Qdt. The left-hand side is the flow of matched
producer access points, and the right-hand side is the flow of shoppers into search and perhaps from previous
searches.
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Figure 4: The Model: A Diagrammatic Exposition.

which we refer to as the aggregate demand. (We later describe how the arrival rate of shoppers

differs for deviant producers who charge a different price.)

The resell value of the good for the distributor is (1+ η)P , where η ∈ R is a match-specific,

i.i.d. exponentially distributed taste shock with mean E[η] = η0 and variance Var[η] = η20.
14

The shock is only observable to the shoppers upon forming the match and prices cannot depend

on this shock. The probability density function (PDF) of this taste shock is denoted by g(η) =

η−1
0 exp(−ηη−1

0 ), and G(·) denotes its cumulative distribution function (CDF).

To simplify notation, it is convenient to define the effective price paid p := p̃ − ηP by

the shopper for a quality-adjusted unit of the good purchased at the quoted price p̃. By

definition, in that case the resale price is P , so that the surplus from trade remains the same

P (1 + η) − p̃ = P − (p̃ − ηP ). Since the surplus from trade is all that matters, the effective

14The idea of taste shocks builds on the insights of Anderson and Renault (1999) and Wolinsky (1986).
As explained by Anderson and Renault (1999): “[The standard search framework without preference shocks]
does not account for consumers searching for a product they like. To capture this idea, it is necessary to
introduce heterogeneity across products.” Our specification is simpler because it assumes that the search is
executed according to a priori imposed objectives (reservation prices) by the distributor since search costs are
unobservable to the distributor. The idea is that purchasing departments respond to management directives
and fulfill them at whatever cost it may entail. Management sets directives based on average costs and does
not monitor ongoing searches. Our setup is thus less suitable to describe consumer search, and more suitable to
describe delegated B2B search. The presence of this shock in a simple and reduced form way can be thought of
as capturing the presence of multidimensional types and relative entropy costs in Cheremukhin and Restrepo-
Echavarria (2020).

15



price is a sufficient statistic to describe the outcome of a match. Given all access posts quote

the same price in equilibrium, denoted by p̃∗, note that the CDF of effective prices is generated

by the taste shock and given by

Φ(p) := Pr(p̃∗ − ηP ≤ p) = Pr

(
η ≥ p̃∗ − p

P

)
= 1−G

(
p̃∗ − p

P

)
. (5)

It is assumed that shoppers can pull a random effective price quote that falls below the

reservation price p̄ > 0 set by the distributor. We provide the microfoundations for this targeted

search technology below and for now, proceed. The cost of doing so is c(π)v, where π = 1−Φ(p̄)

denotes the required search precision associated with that reservation price, and where Φ(p |

p ≤ p̄) is the CDF of the obtained price.

Given search precision π implied by the reservation price, since the search is random, the

surplus from a match is s(π) =
∫
[0,p̄(π)]

(P − p)Φ(dp | p ≤ p̄), where

p̄(π) := Φ−1(1− π). (6)

In equilibrium, all access posts quote the same price; accordingly, the shopper buys the good

whenever she draws a shock η that exceeds the cutoff

η̄(π) :=
p̃∗ − p̄(π)

P
. (7)

Shocks are drawn each time a shopper draws a producer and obtains a new quote. Using

the fact that the effective price associated with the shock η is p := p̃∗ − ηP , and the fact that

dp = −Pdη, after tedious algebra, it is not difficult to show that the surplus from the match is

s (π) =
P − p̃∗ + P (η̄ (π) + η0)

1− π
, (8)

where to derive this formula we used the fact that, by definition, π = G (η̄ (π)) = 1− e
− η̄∗

η0 , and
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by the memoryless property of the exponential distribution, we know E[η | η > η̄] = η̄ (π)+η0.
15

The distributor chooses the optimal precision π∗ to maximize the expected net surplus from

a match, y = s (π)− c (π). Since sending a shopper costs χv, the equilibrium surplus is

y∗ := max
0≤π≤1

{s (π)− c (π)} = P

(
1− p̃∗

P
− η0 log

(
c0
η0

v

P

))
= χv. (9)

3.1.1 Microstructure of targeted search

To match with producers, shoppers pull effective price quotes until they obtain a quote that

falls below the reservation price. The key assumption is that the reservation price is set by the

distributor a priori, without knowledge of the search costs incurred by shoppers. Consequently,

shoppers must meet this requirement exactly to resell the good to the distributor and cover

their expected search costs. This delegated setup offers significant tractability gains compared

to a setup where shoppers sequentially decide whether to continue searching after each draw.

Formally, let dτ := (dt)2 be the duration of a obtaining a single effective price quote and

suppose the costs is c0v > 0. As the period length shrinks to the limit (dt → 0), drawing a

price below the reservation price must succeed with probability one because an infinite number

of draws is possible16 Accordingly, as shown in the Appendix, the expected number of searches

at precision π is ((1− π) + πβ) (1− πβ)−1, where β ≡ e−ρdτ , which implies

c (π) = c0 (1− π)−1 . (10)

The expected surplus can be calculated analogously, as also shown in the Appendix, and it is

given by (9).17

15Memoryless property of exponential distribution implies gX|X>x (z) = gX (z − x), and hence

E [X|X > x] =

∫
zgX (z − x) dz =u=z−x,du=dz

∫
(u+ x) gX (u) du = x+ E[X].

16Individual searches can also be conducted in parallel. Parallel search does not invalidate the assumption
of sequential search, as noted by Stahl (1989) (see footnote 1), as long as there is some cost of finalizing the
match.

17These formulas apply even in the presence of a diffusion process—even though it is not present in our
model. While the variance of a deviation of the Wiener process is of order

√
t, it is still a random walk process

17



3.1.2 Implied demand for goods

Consider now a deviant access post that quotes a different price from the equilibrium price

p̃ ̸= p̃∗. Such a deviant knows that the shopper who receives its quote accepts it whenever

her shock η obeys the inequality p̃ − ηP ≤ p̃∗ − η̄∗P, where η̄∗ := η̄ (π∗) and η̄ (·) is given by

(7) and π∗ solves (9). Therefore, the match is formed when the realized shock is such that

η ≥ η̄∗+ p̃−p̃∗

P
, which happens with probability G

(
η̄∗ + p̃−p̃∗

P

)
, which means that the arrival rate

of a quote-accepting shopper to that deviant is

λ (p̃, p̃∗) := Λ
1−G

(
η̄∗ + p̃−p̃∗

P

)
1−G (η̄∗)

. (11)

Since in equilibrium p̃ = p̃∗, the implied elasticity of demand at the equilibrium price is given

by

E (p̃∗) :=
λp̃ (p̃, p̃

∗) |p̃=p̃∗

λ (p̃, p̃∗)
p̃∗ = − g (η̄∗)

1−G (η̄∗)

p̃∗

P
= −η−1

0

p̃∗

P
, (12)

where λp̃ (p̃, p̃
∗) := ∂λ(p̃,p̃∗)

∂p̃
is the partial derivative with respect to the sub-scripted argument.

3.2 Production and marketing

The producer maximizes the value of its portfolio of access posts, which is V = MV1 + NV0,

where V1 is the value of stocked access posts, V0 is the value of unstocked access points, and

M,N are the corresponding masses. The choice variables comprise the price quoted by the

representative access post p̃ at each point in time, and the entry and exit of existing access

points from the pool of N . Since adding an access point costs ϕv and terminating an access

point is free, optimal entry (assuming N > 0) requires that

0 ≤ V0 ≤ ϕv, 0 ≤ V1. (13)

and its expected innovation is zero at any point in time. Regarding the drift, since it is of order dt, it cannot
impact the outcome of searches that take τ = (dt)2 to complete. Formally, let the average number of searches

be n. Note that the time it takes to complete them is n(dt)2, which is a fraction n(dt)2

dt = ndt of the period
length that is normalized to 1. Since the choice of n is independent of the period length, the conclusion follows.
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The producer will add or terminate access posts at an infinite rate on that boundary, and hence

entry and exist are described by a Dirac delta function x∗ at the top and δ∗ at the bottom;

formally,

(δ∗, x∗) =

(d (V0) , 0) if V0 ≤ 0

(0, d (V0 − ϕv)) if V0 ≥ ϕv,

(14)

where d (.) denotes a Dirac delta function.18 The policy function thus feature an inaction region

(zone) and a Dirac control on the boundary, and the measures M,N evolve according to the

law of motion

Ṁ = τ̂N − λ (p̃, p̃∗)M − δM + xN (15)

Ṅ = λ (p̃, p̃∗)M − τ̂N − (δ + δ∗)N + x∗N,

where τ̂N is the endogenous inflow of stocked units such that 0 ≤ τ̂ ≤ τ and λ (p̃, p̃∗)M is the

matching rate.

The price is set to maximize the value of a stocked access point, which evolves according to

the Hamilton-Jacobi-Bellman (HJB) equation of the form

ρV1 = −ζv +max
p̃≥0

{λ (p̃, p̃∗) (p̃+ V0 − V1)} − δV1 + V̇1. (16)

The left-hand side represents the opportunity cost of operating a stocked access post—the

interest flow ρV1 associated with its fair market value. The right-hand side represents all net

flows and capital gains implied by holding the access post. In particular, ζv ≥ 0 is the flow

cost of maintaining the access post, and maxp̃≥0 {λ (.) (p̃+ V0 − V1)} represents the flow from

selling the good, which comprises revenue p̃ from sales and the capital loss associated with the

state transition stocked to unstocked state captured by the term V1 − V0. Finally, V̇1 is the

capital gain associated with the evolving aggregate state. Accordingly, the quoted price p̃ ≥ 0

18We omit the law of motion when N = 0 as it will not be relevant. Exerting control on the boundary is
independent of the differential equation (20). We use Dirac delta for analytic transparency, but this can be
replaced by a large value of x∗ > δ to approximately satisfy (13). Alternatively, convex cost of control can be
added to HJB equation. This would not affect our results.
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satisfies

λp̃ (p̃, p̃
∗) (p̃+ V0 − V1) + λ (p̃, p̃∗) = 0. (17)

An unstocked access post does not contribute to the search, and the production ferry arrives

at a Poisson rate τ . Accordingly, the value of an unstocked access point V0 is given by

ρV0 = max
0≤τ̂≤τ

{
−ζv

(
1− τ̂ τ−1

)
+ τ̂ (−v + V1 − V0)

}
− δV0 + V̇0. (18)

The producer may choose to idle the unit by picking τ̂ < τ , but in that case the maintenance

cost −ζv (1− τ̂ τ−1) must still be paid. The term −v + V1 − V0 is the production cost and

capital gain implied by the arrival of the production ferry. It is clear that the policy function

is bang-bang, and typically will involve τ̂ = τ :

τ̂ =

τ if (−v + V1 − V0)− ζv (1− τ−1) ≥ 0

0 otherwise.

(19)

In the case the above HJB equation collapses to ρV0 = τ (−v + V1 − V0)− δV0 + V̇0.

For later use, note that the sufficient statistic to describe the above dynamic problem is the

value of inventory X = V1 − V0. This is clear by subtracting the two HJB equations side by

side and the definition of X , which, assuming τ = τ̂ , gives

ρX = −ζv +max
p̃≥0

{λ (p̃, p̃∗) (p̃− v − X )} − τ (−v + X )− δX + Ẋ . (20)

Using the formula for the access post-level demand, the equilibrium price must satisfy the fixed

point:

p̃∗ = v + X + η0
P

p̃∗
. (21)
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3.3 Consumption and monetary policy

The household problem is standard. The household maximizes E
∫∞
0

e−tρ∗ log (Ct) dt subject to

budget constraint PtCt + Ḃt = ρtB +wLt +Πt, where ρ∗ is an exogenous discount factor, B is

the stock of nominal bonds (consoles) that pay return ρ > 0, L is labor, and Π are aggregate

profits. Since the nominal wage is rigid, L is dictated by the labor demand at the rigid wage

w rather than chosen by the household. We do not model the details. (Standard no-Ponzi

condition applies to B.)

The interest rate ρ is assumed to be set by the monetary authority and follows some (un-

specified) policy rule that allows agents to form an accurate expectation of the future path of

monetary policy after an MP shock. Market clearing requires that consumption equals pro-

duction, and hence C = Q. The link between the interest rate set by MP and the economy is

determined by the Euler equation and given by

ρ = ρ∗ − Ċ

C
= ρ∗ − Q̇

Q
. (22)

3.4 Equilibrium definition

We close the model by defining the perfect foresight equilibrium in response to an unexpected

time path of an “MIT” MP shock {ρt}.

Definition 1. Given an assumed path for monetary policy {ρt} and initial conditions

{M0, N0, B0}, the equilibrium comprises the paths of: i) distributor’s search intensity and

shopper search precision {Qt, πt}, ii) masses of producer access posts {Mt, Nt}, ii) retail and

wholesale prices {Pt, p̃
∗
t}, iii) access post values {V0,t, V1,t} (equivalently Xt), and access post

stock control policy function {δ∗t , x∗
t}, such that the following conditions are satisfied: 1) HJB

equations (16) and (18) given (11), (4) and (12), 2) the boundary condition (14), 3) the Euler

equation (22), and 4) the law of motions (15), given policy given (19) and (21). Labor market

clearing is replaced by the rigid wage assumption at v ≡ w ≡ 1.

The lemma below establishes the existence of a unique steady-state equilibrium. Steady-

state equilibrium comprises a constant policy path ρt = ρ∗ and constant paths of all the
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variables in the definition above that satisfy the stated equilibrium conditions assuming steady

state values as the initial condition. Given this result, we later ensure the existence of a

unique stable manifold in the neighborhood of the steady state. (All proofs are relegated to

the Appendix.)

Lemma 1. For η0 > 0 small enough, the deterministic steady state equilibrium exists and is

unique.

3.5 Analytic Results

Here we characterize how aggregate demand affects markups and examine the response of

markups and inventories to a demand shock (ceteris paribus). The literature uses monetary

policy (MP) to isolate the effect of a demand shock while controlling for the path of interest

rates. To that end, our analysis focuses on the case of moving the aggregate demand Λ while

assuming constant ρ. This is convenient for two reasons. First, the shock is one dimensional,

and second, the path of Λ determines the path of the inventory-to-sales ratio, which, recall, is

Λ−1. What we seek to establish is how markups respond to this shock.

3.5.1 Effect of aggregate demand on markups

Lemma 1 implies that the markup in the wholesale market is

µ :=
p̃∗ − v

v
=

X − v

v
− E (p̃∗)−1 p̃

∗

v
=

X − v

v
+ η0

P

v
. (23)

The last term (η0
P
v
) captures the fact that the taste shock is positive on average; that is, the

fact that the distributor gets 1+η0 effective units of the good on average from each match. The

important term is thus the first one, namely X −v
v

. Observe that the numerator of this term,

namely

vm := X − v = V1 − V0 − v,

is the user cost of stock (inventory), since V1−V0−v is the fair market value (cost) of instantly

exchanging an unstocked access point for a stocked access point net of production cost v. To
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see this in the context of the textbook formula for the user cost, note that in the deterministic

steady state its vm = v (δ + ρ)ϕτ−1. Accordingly, to produce a unit of output, one needs to

“rent” an unstocked access point for τ−1 periods of time (on average), which costs vϕ in the

steady state to buy or sell, and since the financing cost is ρ+ δ, the state user cost follows.19

This formula is intuitive and asserts that in equilibrium the markup µv covers the user cost

of an access post. But it is not helpful to understand what drives pricing decisions in our model.

Note that X depends on µ. On the boundary (and steady state) X = v + ϕv and both X , µ

are determined by the entry condition. But in the inaction zone, which is of interest here, µ

and X are jointly determined and the above formula only tells us the outcome.

To better understand how prices are set in our model, we thus solve the two HJB equation

for V1 by assuming optimal policy function (and τ̂ = τ). After some manipulations, it is not

now difficult to derive that

V1 = (ρ+ δ)−1max
p̃≥0

{(
p̃− v

(
τ (τ + ρ+ δ)−1 + λ (p̃, p̃∗)−1 ζ

))
λ (p̃, p̃∗)−1 + (τ + ρ+ δ)−1

}
+R

(
V̇1, V̇0

)
,

where R
(
V̇1, V̇0

)
is some residual of time derivatives with the property that R (0, 0) = 0.

This is just an equivalent representation of the two HJB equations, no more, but it is more

informative.

Ignoring the residual, note that, by the above formula, the producer sets the price to maxi-

mize the profit from selling a unit of output (numerator) per unit of time that it takes to sell that

units (denominator). In particular, in the numerator, the term p̃ − v
(
τ (τ + ρ+ δ)−1 + λ−1ζ

)
is the profit from selling a unit of output that adjusts for the effect of discounting and de-

preciation during production time (τ/ (τ + ρ+ δ)), and it includes the maintenance capitalized

maintenance cost ζv incurred over the time it takes to find a customer (λ−1ζ). The denominator

comprises a discount factor and depreciation adjusted production time (τ + ρ+ δ)−1 and the

matching time λ (p̃, p̃∗)−1. As expected, setting τ = ∞ boils down to the standard monopoly

19The textbook formula of the user cost of capital assumes one period delay between investing and obtaining
a unit of capital is: User Cost of Capital = Price of Capital Good * (Interest Rate + Depreciation Rate). The
only difference is that the delay between investing and obtaining a unit of stock is τ−1 (in expectation) in our
model.
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problem of the form:

V1 →τ↑∞ (ρ+ δ)−1

(
max
p̃≥0

{λ (p̃, p̃∗) (p̃− v)} − ζv + V̇1

)
,

and so the difference between these two formulas is key to understand how pricing in our model

differs from the standard case.

To that end, consider the following prototypical representation of profit maximization im-

plied by our model:

max
p̃

p̃− v̂

T (p̃, p̃∗) + T0

⇒ FOC : p− v̂ =
T (p̃, p̃∗) + T0

Tp̃ (p̃, p̃∗)
=

Λ−1f (p̃, p̃∗) + T0

Λ−1fp̃ (p̃, p̃∗)
.

where T (p̃, p̃∗) = Λ−1f (p̃, p̃∗) captures how matching time depends on the aggregate demand

Λ and the quoted price via some function f (·), T0 is adjusted production time, and v̂ is the

adjusted marginal cost. Note that the standard case corresponds to T0 = 0, and so what is of

interest is the effect of T0 > 0. It is clear from the first order condition on the right that the

key effect has to do with the fact that when T0 > 0, aggregate demand Λ affects the markup

set by the producer over the effective marginal cost v̂; in particular, the markups becomes

procyclical in response to demand. In contrast, when T0 = 0,which is the standard monopoly

case, markups are positive but they do not vary with demand Λ.

Why is this the case? Intuitively, profit maximizing producers with T0 > 0 take into account

how matching time, which depends on the markup and aggregate demand, relates to production

time. They adjust markups because matching time lagging production time reduces utilization

of the fixed resources and that is costly. In particular, if selling time is longer, producers are

willing to sacrifice markups to increase matching rate and the payoff is a higher utilization rate

of their sales infrastructure.

3.5.2 General equilibrium

In general equilibrium, wholesale prices depend on retail prices by (21) and (9). Obtaining

a closed form solution is not possible, and to analyze our model analytically we resort to a
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log-linear approximation of the logarithmic term in (9) around the steady-state solution, which

we established earlier. In particular, we approximate the term

log

(
c0
η0

v

P

)
− log

(
c0
η0

v

Pss

)
≈
(

P

Pss

)−1

− 1, (24)

soak up the term “ log
(

c0
η0

v
Pss

)
” from the calculation of the steady state by defining

χ̃ := χ− η0Pss log

(
c0
η0

v

Pss

)
, (25)

and plug in these results to (21) and (9) to obtain

p̃∗ = X (1 + η0) + Θv, P = X +Θ
v

η0
, (26)

where

Θ := η0
η0 (1 + ϕτ−1 (δ + ρ)) + χ̃

1− η0
. (27)

These are the equilibrium prices that approximate the linear relationships around the deter-

ministic steady state. We next use them to obtain a full characterization of local equilibrium

dynamics.

3.5.3 Impulse response of markups and inventory-to-sales ratio to a demand shock

We now characterize how equilibrium markup and the inventory-to-sales ratio respond to a

demand shock that moves Λ because Q falls and M is sticky due to the inaction region. The

key friction, of course, is the fixed cost ϕv > 0 (amid τ−1 > 0) and the assumption that δ is

fairly small so that the active adjustment margin is minuscule. Below, we consider two cases

for comparison: the frictionless model with ϕ = 0 and the baseline model with ϕ > 0. (Our

quantitative model endogenizes this shock as MP shock and generates it from ρ.)

Frictionless model (ϕ = 0): We consider this case to highlight the key result derived by

BK to show that the markups and the inventory-to-sales ratio are intimately linked without
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friction. Note that when ϕ = 0, X ≡ v (all t) and hence Ẋ ≡ 0. Intuitively, this case arises

because, effectively, the producer has full control over the mass of stocked access posts. At any

instance of time, the producer can add access posts at an infinite rate, and then terminate any

excess ones at no cost.

By (23), it is immediate that the markup is given by

µ∗ = −E (p̃∗)−1 p̃
∗

v
= η0

P

v
, (28)

which yields the standard monopoly pricing formula, and hence it is constant by (26). As noted

before, the key property of this formula is that the level of demand Λ is irrelevant, and that is

why the markups are constant. The retail price P also does not change after the shock.

As for the the inventory-to-sales ratio, we plug in X = v, Ẋ = 0 to the HJB equation in

(20) to calculate Λ−1, which gives

Λ−1 ≡ M

Q
=

Θ+ η0
δ + ζ + ρ

µ∗, (29)

where, recall, Λ−1 corresponds in the model to the inventory-to-sales ratio. What this formula

shows is that the assumed path for Λ is simply infeasible unless the markup moves. This result

is the analog of the result obtained by Bils and Kahn (2000), since we assumed here a constant

marginal cost.

Baseline model (ϕ > 0): Consider now the baseline setup assuming ϕ > 0 and suppose the

shock is large enough so that the economy enters the inaction zone (M then slowly depreciates

at rate δ). Suppose the shock is transient and

Λ̇ ≡ (Λss − Λ)ω ⇒

Λ̇ > 0 Λ < Λss

Λ̇ < 0 Λ > Λss

, (30)

where ω > 0 is some assumed mean-reversion rate of the shock. By definition, the inventory-

to-sales ratio Λ−1 in this case rises and steadily declines towards the steady state.
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Figure 5: Phase Diagram for Proposition 1.

Plugging (26) to the combined HJB equation in (20), it is clear that the value of inventory

follows the differential equation of the form

Ẋ = X (δ + ρ+ τ − η0Λ)− ΛvΘ− v (τ − ζ) , (31)

where δ + ρ+ τ − η0Λ > 0, as long as τ > ζ (which we assumed) and η0Λ is not too large—or

else in steady state we could not have Ẋ = 0. Accordingly, in the neighborhood of the steady

state, we have Ẋ > 0 X > X ss

Ẋ < 0 X < X ss

. (32)

Plugging in to the retail price P from (26) to (23), the formula for the markup is exactly

identical,

µ =
X − v

v︸ ︷︷ ︸
=vm/v

+η0
τ + (δ + ρ)ϕ

τ
. (33)

but since X is no longer constant, markup is no longer constant. As explained earlier, in this

case, we are in the inaction zone and producers see a long selling time. This moves both the

markup and X and the fixed point of that process is captured by the equation above.

To show negative correlation between µ∗ and Λ−1, consider the phase diagram in the space
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of (Λ,X ), as locally implied by (31) and (30). The signs of the vector field (arrows in the figure)

are given by (32) and (30), which implies that, along the stable manifold, X drops together

with Λ and converges back to the steady state as the shock mean reverts. Accordingly, on

impact we have X < v+ϕv and thereafter Ẋ > 0, which means that and X slowly converges

towards its steady state value v + ϕv. Since the inventory-to-sales ratio corresponds to Λ−1,

the inventory-to-sales ratio goes up as the markup falls. Accordingly, we have established that

the markup and the inventory ratio are negatively correlated.

Intuitively, the friction changes how markups move vis-à-vis the inventory-so-sales ratio is

because access posts are firm’s long-lived asset and scrapping them early in response to transient

shocks is not optimal. But if that’s the case, the producer is better off utilizing these assets.

This raises the inventory-to-sales ratio and the fact that selling time is longer results in lower

markups. In equilibrium, these affects are supported by a decline in the user cost vm in (33).

Of course, in equilibrium, lower markups cannot change the aggregate arrival rate, which is still

Λ. Put differently, the market becomes more competitive and for this reason, markups decline.

Formally, the HJB equations show that what sustains the negative correlation between the

markup and the inventory-to-sales ratio is the fact that the value of inventory change. This is

clear from the formula

Λ−1 =
M

Q
=

η0X + vΘ

X (δ + ζ + ρ)− Ẋ − v (τ − ζ)
µ∗, (34)

and the fact that the first term is no longer constant since it involves X .

3.5.4 Response asymmetry

Our model is a representative agent model and it implies an asymmetric response to MP shocks.

This is because the inaction region applies to negative shocks but it does not apply to positive

shocks. However, the stark nature of this asymmetry should taken with a grain of salt because

it is driven by the fact that our model is a representative agent setup. A simple extension that

incorporates idiosyncratic demand shocks on a sectoral level would break this result because

some firms/sectors would be in the inaction zone in the stationary steady state. Note also that
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some asymmetry is consistent with the data because the largest spikes in the inventory-to-sales

ratio do occur during recessions.

4 Quantitative analysis

We next calibrate our model and compare the implied impulse responses to the ones derived

from the SVAR in Section 2. We begin by describing how we calibrate its parameters, and how

we solve it numerically.

4.1 Parameterization

Period length in the model (integer values of t) is one month to match the frequency of the

SVAR from Section 2. To calibrate c0, η0 and χ̃, we set three joint targets: 1) The wholesale

markup T1 := (p− v) /v of 50 percent, which is roughly in line with the gross margin in the S&P

Compustat for the more recent years (De Loecker et al., 2020),20 2) the distribution content in

final consumption of 50 percent—as measured by the ratio T2 := (P − p̃∗) /P—which is roughly

in line with the estimates of the share of distribution content of retail goods (Burstein et al.,

2000), and 3) the average search cost T3 := (c (π∗) v − p̃∗) /p̃∗ of 2%. The mapping between

these targets and the parameters is as follows:

c0 = T3
(T2 + 1) (τT2 − ϕ (δ + ρ))

τ (T2 + T3 + T2T3)− ϕ (δ + ρ)
, η0 =

(T1 − 1) (ϕ (δ + ρ)− τT2)

τ (1 + T2)
, χ̃ =

T1 (1 + T2)

1− T1

.

To set τ , we match the delivery delay (time) of materials in the US manufacturing sector,

which is estimated at 60 days.21 According to Blinder et al. (1998) (page 96), 86 percent of sales

by manufacturing firms are to other firms, so most sales are materials (intermediate goods).

We set ϕ = 1/2. This value generates a consistent SVAR decline in labor productivity after 10

quarters. We calibrate δ to match the decline in industrial production implied by our SVAR

20In the recent data gross margin is above 50 percent, but earlier in the sample is it slightly below.
21These estimates come from Deloitte, https://www2.deloitte.com/us/en/insights/industry/

manufacturing/manufacturing-industry-outlook.html. The original source is the Institute of Supply Man-
agement.
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after 10 quarters.22 W set the steady state interest rate ρ = ρ∗ equal to 10 percent, which

is within the range of estimates of the weighted average cost of capital (WACC), a measure

broadly used in the valuation of US companies.23 Finally, we set an arbitrary value of ζ equal

to 10 percent. Parameter values are summarized in Table 1.24

Parameter η0 c0 δ ϕ χ τ ζ ρ
Value .16 .065 10−4 1/2 1.91 .5 .1 8× 10−3

Table 1: Assumed Parameter Values in the Calibrated Model.

4.2 Solution Method

To solve for impulse responses, we solve the differential equation in (31), which after plugging

in the parameters becomes

Ẋt − Xt(0.5 + ρt − 0.161Λt) + (0.32− 0.031ρt)Λt + 0.4 = 0.

As long as X remains in the inaction zone (and stays positive), access posts depreciate at a

constant rate δ, and this equation describes the evolution of X towards the steady state. We

verify that it remains in the inaction zone. Our terminal condition is that at some distant

horizon, Xt returns to the steady state, and we solve the above differential equation using the

finite element method with that terminal condition.

The inputs to solve the above differential equation are the assumed paths of Λt and ρt. To

that end, we assume that the path of ρt is such that Λ−1
t follows the SVAR-implied impulse

response function in Figure 3 (leftmost panel)—which we approximate using a smooth function

that closely fits the data.25 In particular, we back out the interest rate from the Euler equation

22The calibrated value is small relative to typical measures of capital depreciation rate. However, note that
the amortization cost of access posts can be arbitrarily large if there are maintenance costs. Such costs in our
model are part of ζv in (18) and (16).

23See the range of estimates at https://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/

wacc.html.
24As we show in the robustness analysis in the Online Appendix, may of these other parameters have a

significant impact on the results. What is needed for our results to go through is that ϕ is not too low and δ is
not too high. In particular, search costs could be significantly lower, or higher.

25We fit a function of the form: atce−bt, where a, b, c are coefficients to minimize the distance to the empirical
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Figure 6: Model: Impulse responses to demand shock (first panel on the left).

in (22), plug in the new path for interest rates, and solve for the fixed point. After solving for

this fixed point, we the solve for the paths of N and M from Ṁt = −ΛtMt+τNt−δMt and Ṅt =

ΛtMt−τNt−δNt—since we know x∗ = 0 in the inaction zone. (When Xt hits the steady state,

the laws of motion change to Ṁt = −ΛtMt+τNt−δMt and Ṅt = ΛtMt−τNt+(x∗
t−δ)(Nt+Mt),

for some large x∗, but this occurs beyond the horizon of the plotted impulse responses.)

Figure 6 shows the obtained paths of the key variables. This figure provides a decomposition

of the impact of endogenous interest rate—which corresponds to the difference between the blue

and the orange line, labeled “Model ex.ρ” and “Model en.ρ,” respectively.

4.3 Mapping between Model and the Data

We associate real sales in the data with Q in the model and industrial production with the

number of switches from an unstocked to a stocked state, τN . Accordingly, we associate

capacity utilization in the data with the ratio of total labor usage in the economy (numerator)

to the maximum labor usage had all units been producing output (denominator), which gives:

Capacity Utilization =
τN + ζM

τ(M +N)
.

Mapping labor productivity presents some ambiguity because it is not clear how one should

handle the entry cost ϕx∗(M + N). If the entry cost involves investment in R&D, that part

impulse response function. The estimated function is 0.232697 − 6.88643 × 10−5e−0.0944353tt1.29557. To ensure
it returns to steady state in finite time, we assume that after T = 100 we add an infinitesimal drift −10−5t to
this function. This drift term is set small enough to ensure it has no impact on the resulting path.
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should not be included because R&D investment is capitalized in national accounting statistics.

We opt for the worst-case scenario of treating the entry cost as an expensed cost and define

labor productivity as:26

Labor Productivity =
Industrial Production

ζM + τN + ϕx∗(M +N)
.

We map firm-level measured markups onto the wholesale markup log(p̃∗/v) ≈ (p̃∗ − v)/v.

Finally, we map P onto the CPI price level. The idea here is that retail prices include all

markups and all distribution costs, which is represented by P in the model.27

4.4 Quantitative results

Figure 7 shows our quantitative results. For comparison, we report both a constant and an

endogenous path for ρ, labeled “Model ex.ρ” and “Model en.ρ,” respectively. As we have shown

analytically in the previous section, the model generates procyclical markups and countercycli-

cal inventory-to-sales ratio. The other impulse responses are also in line with the data. In

particular, gross output-to-sales ratio moves little, capacity utilization and labor productivity

both declines and consumer prices move little. Labor productivity initially rises because firms

no longer bear the cost of replacing depreciating access posts—as we discussed in the previous

section—but it declines afterward.

The interest rate path corresponds to the path of ρ converted from a monthly to an annual

rate using the expectations theory to be comparable to the one-year T-bill rate. The model

matches the path from SVAR well until monetary policy changes course, which the model cannot

match the given assumed path for the inventory-to-sales ratio that we match by construction.

26This is the worst-case scenario because our calibration targets the decline in labor productivity. This
assumption reduces the size of the inaction zone. The presence of a sufficiently wide inaction zone is central to
our mechanism.

27This mapping of P onto retail prices presents some ambiguity because distributors in our model are an
abstract concept that in part capture market activities of retailers and in part stand in for distribution activities
done by households. In the latter case, the CPI would comprise some retail prices and some wholesale prices,
depending on how much distribution is done within households. This source of mismeasurement is fairly small
given that 86 percent of transactions are B2B transactions in inventory-holding industries, and about 70 percent
in the economy as a whole (Blinder et al., 1998).
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In particular, our model predicts that the interest rate must be above the trend until the

inventory-to-sales ratio returns to the steady state and that the recovery starts only after

the inventory-to-sales ratio returns to the steady state. Hence, the model overpredicts the

persistence in other variables vis-à-vis the persistence of the inventory-to-sale ratio. It should

be noted, however, a faster decline in the inventory-to-sales ratio in the data is still consistent

with the depicted confidence bands, and the empirical results are not conclusive as to whether

this represents our model’s failure.

Lastly, while in our baseline model real wage (v/P ) rises, it does not have to be the case.

In particular, suppose that v = wL−(1−α), as would be the case in the presence of capital as

a fixed factor. In that case, as discussed in the Online Appendix, after MP contraction, even

if w declines, v can be constant as in the baseline model because labor supply L declines and

hence L−(1−α) rises. We conclude that, qualitatively, given scant change in the price level P ,

our model is broadly consistent with real wages being acyclical—as, arguably, is the case in the

data (Christiano et al., 1997).

4.5 Steep marginal cost: A Discussion

We return to the issue of steep marginal costs and demonstrate this explicitly using our model.

As argued in Section 2.4, mismeasurement of variable costs implies that marginal cost curves

are fairly steep. However, if this is the case, the point that inventories imply countercyclical

markups becomes moot. Violations of identification assumptions 1 and 2 produce a similar

effect, and the same argument extends to these assumptions (Nekarda and Ramey, 2013).

Consider the frictionless calibrated model with ϕ = 0 and assume that the marginal cost

curve on the aggregate level is given by v (Lt) = v0 + 2
(

Lt−Lss

Lss

)
, where L is aggregate labor.

As in the baseline setup, the producer takes the marginal cost as given, and so the assumed

curvature is an aggregate phenomenon. What is important is that the producer understands

how the marginal cost evolves with employment after the shock hits. The value of the coefficient

(“2” in front of the linear term) is the worst-case scenario for mismeasurement, as discussed in

Section 2.4.
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Figure 8: Frictionless Model (ϕ = 0) with Increasing Marginal Cost Schedule.

To make markups move over the cycle, assume χ̃ (Lt) = χ̃ + .2
(

Lt−Lss

Lss

)
. This crude as-

sumption suffices to examine the correlation when markups do fall. One interpretation of this

specification is that the costs of distribution simply fall as employment falls in the economy, and

so does the match surplus y∗. The source of markup movements is not important to establish

their consistency with the dynamics of the inventory-to-sales ratio.

Since Xt ≡ v (Lt) and Ẋ = 2L̇t, the HJB equation in (31) boils down to a differential

equation for employment Lt of the form

0.73 + Lt (Λt (7.95 + Lt)− 2.03) + 13.57L̇t − 3Λt = 0.

To solve for the impulse response of markups, we plug in the fitted function to the data for Λt

(as stated in footnote 25), and assume an exogenous path for ρ—which, as we have shown, has

a scant impact on the results. The terminal condition is that at some distant horizon after the

shock dies out Lt returns to the steady state. Note that this model qualitatively succeeds if Lt

falls after fitting Λt, in which case we can say that the inventory-to-sales ratio is countercyclical.

As Figure 8 shows, that the model succeeds: markups fall and the inventory-to-sales ratio rises

after the shock (the inverse of Λ).

5 Conclusions

We develop a new theory of inventory dynamics that integrates other productive assets alongside

inventories, reconciling the procyclical response of markups to monetary policy shocks with the
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countercyclical response of the inventory-to-sales ratio. Emphasizing the putty-clay nature of

many such assets, our model explains the observed data patterns effectively. In particular, our

empirical analysis of the effects of monetary policy shows that the model aligns well with the

observed impulse responses. Furthermore, we argue that any mismeasurement of markups due

to deviations from our identification assumptions would suggest steep marginal cost curves,

thereby rendering the point that inventories imply countercyclical markups moot.
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Appendix

This Appendix contains omitted proofs, supplementary derivations, and the list of data sources.

An additional Online Appendix and Mathematica notebooks are available online. They contain

detailed derivations, extensions, and additional robustness exercises referenced in text.

Derivation of d (π) and s (π) for Section 3.1.2: By definition of precision π and random

search, an observation meets the criterion after exactly a single search with probability 1− π,

after two searches with probability (1− π) π, three searches with probability (1− π) π2 and so

on and so forth. This process implies a geometric distribution but the presence of discounting

requires some care to derive the mean. Let the discount factor be β ≡ e−ρdτ and note that, as

with standard geometric distribution, the expected cost until termination is

Sum := c0 (1− π) β + πc0β + πβ

c0 (1− π) β + πc0β + πβ (c0 (1− π) β + ...)︸ ︷︷ ︸
=Sum

 ,

which boils down to c0 (1− π) β + πβc0 + πβSum = Sum, and hence gives Sum =

c0β (1− πβ)−1 →β↑1 c0 (1− π)−1. Applying an analogous reasoning to the expected surplus

from a match—while noting that dt is small so that the expected change of static surplus is of

second order in dt (see discussion at the end)—analogously yields the summation

Sum := s (π) (1− π) β + π0β + πβ

s (π) (1− π) β + π0β + πβ (s (π) (1− π) β + ...)︸ ︷︷ ︸
=Sum

 ,

and hence β (1− π) s (π) + πβSum = Sum, which gives Sum = s (π) (1− π) (1− πβ)−1 →β↑1

s (π) stated in text. If the static surplus contains a diffusion process, the expected value is still

the static value as dt → 0. The Wiener shock itself, while its variance is of order
√
dt, does

not affect the expected value because of symmetry. The drift term is of order dt, and hence its

effect vanishes in the limit. (See footnote in text for an explicit argument.)
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Proof of Lemma 1: Note that in steady state equilibrium λ (p̃∗, p̃∗) = Λ > 0. By (20) in

steady state we must have

X :=
Λ (p̃∗ − κv) + τ (1− κ) v

Λ + ρ+ τ + δ
= (1− κ) v + ϕv.

This defines the steady state value of Λ. Consider now the first order condition for p̃∗ in (21)

(∗) : p̃∗ − (1− κ) v − ϕv = κv + η0
P

p̃∗
.

Observe that on the left-hand side we have a linear function that is strictly increasing in p̃∗

and has a negative vertical intercept, and that on the right-hand side (κv + η0
P
p̃∗
) we have a

downward sloping hyperbola for all p̃∗ ≥ 0. The range of the hyperbola is from ∞ at p̃∗ → 0+

to κv > 0 at p̃∗ → ∞. Therefore, (*) has a unique solution for any fixed value of P > 0.

Denote that solution as p̃∗ (P ) and note that it is parameterized by η0. Note also that p̃∗ (P )

is a strictly increasing and strictly concave function of P , which we establish in the following

supplementary lemma (proof is at the end):

Lemma 1.1: p̃∗ (P ) is a strictly increasing and strictly concave function.

Next, we take into account that steady state P must satisfy (9), and hence P = P (p̃∗) is

such that

P (p̃∗) = p̃∗ + χv − η0P (p̃∗) log

(
c0
η0

v

P (p̃∗)

)
.

The fixed point P, p̃∗ is defined by the system P = P (p̃∗) , p̃∗ = p̃∗ (P ), and it must be such

that ∞ > P > p̃∗ > v. We will construct a sequence {Pk} which, if converges, converges to

that fixed point. To establish the convergence of that sequence, we will show that the sequence

is monotone increasing and bounded from above by another convergent sequence; that is, given

{Pk} we construct
{
P̄k

}
such that Pk < P̄k for all k = 0, 1, 2, 3, and show P̄ := limk→∞ P̄k > 0.

We start from the definition of the sequence of interest: {Pk}.

Define the sequence P0, P1, P2.... such that, given P0 = v, i) p̃∗0 solves (*) given P0 (which

we established is unique), ii) P1 = p̃∗0 +χv− η0P0 log
(

c0
η0

v
P0

)
, and so on with P1 replacing P0 in

i to define p̃∗1 and p̃∗1 replacing p̃∗0 in ii to define P2 etc... Note that this sequence is a monotone
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increasing sequence if we pick a sufficiently small η0. To see this, note that we can ensure that

η0P log
(

c0
η0

v
P

)
is a positive and arbitrarily small number for any P ∈ [P0, P̄ ], since it can be

tightly bounded from above by choosing η0 small enough. This follows from: i) the properties

of function f (η0) := η0 log
(
aη−1

0

)
for any a > 0 (note: limη0↓0 f (η0) = 0 and f (η0) strictly

decreasing and positive-valued for sufficiently small η0 > 0), and ii) the fact that we can then

pick η0 small enough to ensure log c0
η0

v
P

> 0 for any P ∈ [P0, P̄ ] and by i bound it as follows

0 < η0P log
(

c0
η0

v
P

)
< η0P̄ log

(
c0
η0

v
v

)
< χv. Accordingly, P1 > P0, and by Lemma 1.1, we know

that p̃∗1 > p̃∗0. Hence, as long as Pk ≤ P̄ , this is a monotone increasing sequence. We next

construct the bounding sequence {P̄k} and show it converges.

Consider the sequence P̄0, P̄1, P̄2.... such that P̄0 = v + η0v and i) p̃∗0 solves given P̄0 (*), ii)

P̄1 = p̃∗0 + χv, and so on and so forth with P̄1 replacing P̄0 in i to define p̃∗1 and p̃∗1 replacing p̃∗0

in ii to define P̄2 etc... Note that P̄1 > P1, since

P1 := p̃∗0 + χv − η0P0 log

(
c0
η0

v

P0

)
< p̃∗0 + χv := P̄1,

given our choice of η0. It is clear that this argument extends to k = 2, 3... because an analogous

inequality applies to the subsequent terms by noting that the corresponding p̃∗k
′s of the bounding

sequence
{
P̄k

}
must be larger under the original sequence {Pk} by Lemma 1.1. This bounding

sequence is also monotone increasing and bounded, and hence it converges. To see this, consider

(*) again and plug in for P̄k, and note that the following evaluation applies by the fact that the

underlying p̃∗k
′s of this sequence form an increasing sequence such that:

p̃∗k − X (p̃∗k) = κv + η0

(
p̃∗k−1 + χv

)
p̃∗k

< κv + η0 +
χv

p̃∗k
.

If P̄k →k↑∞ ∞, it is clear that the underlying p̃∗k → ∞. But this contradicts the above inequality

because the left-hand side is strictly increasing in p̃∗k and the right hand side is bounded. It is

straightforward albeit tedious to see that the rest of the equilibrium definition can be satisfied

by a set of constant values consistent with the above. We omit the details. Q.E.D.

Proof of Lemma 1.1 : Let p̃∗ − (1− κ) v − ϕv = ap̃∗ − b, where 0 < a ≤ 1, b > 0, as established

in the main proof. Multiply both sides of (*) in main proof by p̃∗ and observe that the solution
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of (*) is a positive solution of (**): a (p̃∗)2 = (κv+ b)p̃∗+η0P . The left-hand side is a canonical

quadratic function of p̃∗ and the the right-hand side is a linear function with the intercept

that is linear in P . Accordingly, the positive solution p̃∗ of (*), which also solves (**), implies

smaller and smaller increments as P is changed by an equal step ∆P , with the sign (∆p̃∗) of

the resulting increments being the same as sign (∆P ). This is the definition of concavity of an

increasing function.

Steady state for Section 3.5 and Section 4.2: Steady state of the model is: X ss =

v + vτ−1ϕ (δ + ρ), pss = vX ss/v+η0χ̃
1−η0

, P ss = vX ss/v+χ̃
1+η0

, Λss = 1−η0
η0

(δ+ζ+ρ)+(δ+ρ+τ)X ss−v
v

X ss/v+χ̃
=

1−η0
η0

ζ−τ+(δ+ρ+τ)X ss/v
X ss/v+χ̃

. The numerical values for the calibrated parameters are v = 1, p = 1.5,

P = 3. π = 0.865784, Λ = 0.240453, X = 1.0162. For more details see the online Mathematica

notebook.

Data sources: CPI (1979-2012), Industrial production (1979-2012), EBP (1979-2012), One-

Year-Tbill rate (1979-2012), monetary policy shock instrument: Gertler and Karadi (2015).

Data on markups, sales and cogs comes from S&P Compustat Quarterly Fundamentals, as

detailed in text. Additional aggregate series include: capacity utilization (1979-2012) from

the Board of Governors of the Federal Reserve System (BOG); real sales and inventories in

manufacturing and trade industries from Bureau of Economic Analysis (BEA)—which are used

to calculate the IS ratio and the gross output (as sales + change in inventories) in the SVAR;

and labor productivity (1979-2012) in the business cycle from Bureau of Economic Analysis.

Most of these series have been retrieved from FRED, Federal Reserve Bank of St. Louis between

January 1st, 2024 and March 30th of 2024.
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